Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37905511

RESUMO

Metal surgical pins and screws are employed in millions of orthopedic surgical procedures every year worldwide, but their usability is limited in the case of complex, comminuted fractures or in surgeries on smaller bones. Therefore, replacing such implants with a bone adhesive material has long been considered an attractive option. However, synthesizing a biocompatible bone adhesive with a high bond strength that is simple to apply presents many challenges. To rapidly identify candidate polymers for a biocompatible bone adhesive, we employed a high-throughput screening strategy to assess human mesenchymal stromal cell (hMSC) adhesion toward a library of polymers synthesized via thiol-ene click chemistry. We chose thiol-ene click chemistry because multifunctional monomers can be rapidly cured via ultraviolet (UV) light while minimizing residual monomer, and it provides a scalable manufacturing process for candidate polymers identified from a high-throughput screen. This screening methodology identified a copolymer (1-S2-FT01) composed of the monomers 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO) and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), which supported highest hMSC adhesion across a library of 90 polymers. The identified copolymer (1-S2-FT01) exhibited favorable compressive and tensile properties compared to existing commercial bone adhesives and adhered to bone with adhesion strengths similar to commercially available bone glues such as Histoacryl. Furthermore, this cytocompatible polymer supported osteogenic differentiation of hMSCs and could adhere 3D porous polymer scaffolds to the bone tissue, making this polymer an ideal candidate as an alternative bone adhesive with broad utility in orthopedic surgery.

2.
Sci Rep ; 12(1): 7996, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581268

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic disease of the sarcomere that causes otherwise unexplained cardiac hypertrophy and is associated with sudden death. While previous studies showed the role of the epigenetic modifier Brg1 in mouse models of HCM, additional work is needed to identify its role in humans. We tested the hypothesis that BRG1 expression is increased in periods of cardiac remodeling during fetal growth and in development of HCM. We employed immunohistochemical staining to evaluate protein expression of BRG1 in 796 human cardiac specimens (81 from patients with HCM) and describe elevated BRG1 expression in human fetal hearts in early development. In addition, we not only demonstrate increased expression of BRG1 in HCM, but we also show that other diseases that lead to heart failure have similar BRG1 expression to healthy controls. Inhibition of BRG1 in human induced pluripotent stem cell-derived cardiomyocytes significantly decreases MYH7 and increases MYH6, suggesting a regulatory role for BRG1 in the pathological imbalance of the two myosin heavy chain isoforms in human HCM. These data are the first demonstration of BRG1 as a specific biomarker for human HCM and provide foundation for future studies of epigenetics in human cardiac disease.


Assuntos
Cardiomiopatia Hipertrófica , DNA Helicases , Células-Tronco Pluripotentes Induzidas , Proteínas Nucleares , Fatores de Transcrição , Animais , Biomarcadores/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Tissue Eng Regen Med ; 15(12): 1092-1104, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599552

RESUMO

Ventral hernia repair (VHR) with acellular dermal matrix (ADM) has high rates of recurrence that may be improved with allogeneic growth factor augmentation such as amniotic fluid allograft (AFA). We hypothesized that AFA would modulate the host response to improve ADM incorporation in VHR. Lewis rats underwent chronic VHR with porcine ADM alone or with AFA augmentation. Tissue harvested at 3, 14, or 28 days was assessed for region-specific cellularity, and a validated histomorphometric score was generated for tissue incorporation. Expression of pro-inflammatory (Nos1, Tnfα), anti-inflammatory (Arg1, Il-10, Mrc1) and tissue regeneration (Col1a1, Col3a1, Vegf, and alpha actinin-2) genes were quantified using quantitative reverse-transcription polymerase chain reaction. Amniotic fluid allograft treatment caused enhanced vascularization and cellularization translating to increased histomorphometric scores at 14 days, likely mediated by upregulation of pro-regeneration genes throughout the study period and molecular evidence of anti-inflammatory, M2-polarized macrophage phenotype. Collectively, this suggests AFA may have a therapeutic role as a VHR adjunct.


Assuntos
Derme Acelular , Líquido Amniótico , Hérnia Ventral , Herniorrafia , Telas Cirúrgicas , Animais , Hérnia Ventral/metabolismo , Hérnia Ventral/terapia , Ratos , Ratos Endogâmicos Lew
5.
J Tissue Eng Regen Med ; 15(11): 1037-1046, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551456

RESUMO

Platelet rich plasma (PRP) has been shown to improve incorporation and reduce inflammation in ventral hernia repair (VHR) with acellular dermal matrix (ADM). The concentration of platelets in PRP varies in clinical studies and an ideal concentration has yet to be defined. The effects of varied concentrations of PRP on ADM incorporation and inflammatory cell infiltration in a rat model of VHR. We hypothesized that increasing concentration of PRP would lead to improved incorporation, decreased CD8+ and multinucleated giant cell (MNGC) infiltrate. Lewis rats underwent ventral hernia creation and repair 30 days later with porcine non-crosslinked ADM. PRP was applied to the mesh prior to skin closure at concentrations of 1 × 104 plt/µL (PRP-LOW), 1 × 106 plt/µL (PRP-MID), or 1 × 107 plt/µL (PRP-HIGH) and tissue harvested at 2 and 4 weeks. Cellularization, tissue deposition, and mesh thickness using hematoxylin and eosin and Masson's trichrome, and neovascularization was assessed with VVG staining, to establish the relationship of PRP concentration to metrics of incorporation. MNGC and CD8+ T-cell infiltration were quantified to establish the relationship of inflammatory cell infiltration in response to PRP concentration. Lymphocyte infiltration was assessed using immunohistochemical staining for CD8. PRP-HIGH treated had significantly greater tissue deposition at 4 weeks. PRP-MID showed increasing mesh thickness at 2 weeks. Cell infiltration was significantly higher with PRP-HIGH at both 2 and 4 weeks while PRP-LOW showed increased cell infiltration only at 4 weeks. At both time points there was a trend towards a dose dependent response in cell infiltration to PRP concentration. Neovascularization was highest with MID-plt at 2 weeks, yet no significant differences were noted compared to controls. CD8+ cell infiltrate was significantly decreased at 2 and 4 weeks in PRP-LOW and PRP-MID treated groups. PRP at all concentrations significantly decreased MNGC infiltration at 2 weeks while only PRP-HIGH and PRP-MID had significant reductions in MNGC at 4 weeks. Both MNGC and CD8+ cell infiltration demonstrated dose dependent reduction in relation to PRP concentration. Increasing platelet concentrations of PRP correlated with improved incorporation, tissue deposition, and decreased scaffold degradation. These findings were associated with a blunted foreign body response. These findings suggest PRP reduces inflammation which may be beneficial for ADM incorporation in VHR.


Assuntos
Células Gigantes/patologia , Plasma Rico em Plaquetas/metabolismo , Telas Cirúrgicas , Derme Acelular , Animais , Linfócitos T CD8-Positivos/metabolismo , Hérnia Ventral/cirurgia , Herniorrafia , Masculino , Neovascularização Fisiológica , Ratos Endogâmicos Lew , Alicerces Teciduais/química
6.
Surg Infect (Larchmt) ; 22(9): 910-922, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33944615

RESUMO

Background: Infected hernia mesh is a cause of post-operative morbidity. Nitric oxide (NO) plays a key role in the endogenous immune response to infection. We sought to study the efficacy of a NO-releasing mesh against methicillin-resistant Staphylococcus aureus (MRSA). We hypothesized that a NO-releasing polyester mesh would decrease MRSA colonization and proliferation. Materials and Methods: A composite polyester mesh functionalized with N-diazeniumdiolate silica nanoparticles was synthesized and characterized. N-diazeniumdiolate silica parietex composite (NOSi) was inoculated with 104,106, or 108 colony forming units (CFUs) of MRSA and a dose response was quantified in a soy tryptic broth assay. Utilizing a rat model of contaminated hernia repair, implanted mesh was inoculated with MRSA, recovered, and CFUs were quantified. Clinical metrics of erythema, mesh contracture, and adhesion severity were then characterized. Results: Methicillin-resistant Staphylococcus aureus CFUs demonstrated a dose-dependent response to NOSi in vitro. In vivo, quantified CFUs showed a dose-dependent response to NOSi-PCO. Treated rats had fewer severe adhesions, less erythema, and reduced mesh contracture. Conclusions: We demonstrate the efficacy of a NO-releasing mesh to treat MRSA in vitro and in vivo. Creation of a novel class of antimicrobial prosthetics offers new strategies for reconstructing contaminated abdominal wall defects and other procedures that benefit from deploying synthetic prostheses in contaminated environments.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecções Estafilocócicas , Animais , Óxido Nítrico , Poliésteres , Ratos , Dióxido de Silício , Infecções Estafilocócicas/prevenção & controle , Telas Cirúrgicas
7.
J Tissue Eng Regen Med ; 15(7): 634-647, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33880858

RESUMO

Incisional hernia is a common complication of hernia repair despite the development of various synthetic and bio-synthetic repair materials. Poor long-term mechanical strength, leading to high recurrence rates, has limited the use of acellular dermal matrices (ADMs) in ventral hernia repair (VHR). Biologically derived meshes have been an area of increasing interest. Still these materials bring the risk of more aggressive immune response and fibrosis in addition to the mechanical failures suffered by the synthetic materials. Platelet-rich plasma (PRP), a growth-factor-rich autologous blood product, has been shown to improve early neovascularization, tissue deposition, and to decrease the rates of recurrence. Here, we demonstrate that PRP promotes the release of growth factors stromal derived factor (SDF)-1, transforming growth factor-beta, and platelet-derived growth factor in a dose-dependent manner. Additionally, we utilize an aortic ring angiogenesis assay to show that PRP promotes angiogenesis in vitro. A rat model of VHR using StratticeTM ADM demonstrates similar findings in vivo, corresponding with the increased expression of vascular endothelial growth factor and collagen type 1 alpha 1. Finally, we show that the molecular and cellular activity initiated by PRP results in an increased mechanical stiffness of the hernia repair mesh over time. Collectively, these data represent an essential step in demonstrating the utility and the mechanism of platelet-derived plasma in biomaterial-aided wound healing and provide promising preclinical data that suggest such materials may improve surgical outcomes.


Assuntos
Hérnia Ventral/cirurgia , Herniorrafia , Plasma Rico em Plaquetas/química , Animais , Fenômenos Biomecânicos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Derme/efeitos dos fármacos , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Ratos Endogâmicos Lew , Suínos , Cicatrização/efeitos dos fármacos
8.
J Tissue Eng Regen Med ; 15(1): 3-13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197147

RESUMO

The recurrence of ventral hernias continues to be a problem faced by surgeons, in spite of efforts toward implementing novel repair techniques and utilizing different materials to promote healing. Cadaveric acellular dermal matrices (Alloderm) have shown some promise in numerous surgical subspecialties, but these meshes still suffer from subsequent failure and necessitation of re-intervention. Here, it is demonstrated that the addition of platelet rich plasma to Alloderm meshes temporally modulates both the innate and cytotoxic inflammatory responses to the implanted material. This results in decreased inflammatory cytokine production at early time points, decreased matrix metalloproteinase expression, and decreased CD8+ T cell infiltration. Collectively, these immune effects result in a healing phenotype that is free from mesh thinning and characterized by increased material stiffness.


Assuntos
Derme Acelular , Materiais Biocompatíveis , Colágeno , Plasma Rico em Plaquetas , Ratos Endogâmicos Lew , Telas Cirúrgicas , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/química , Colágeno/imunologia , Hérnia Ventral/imunologia , Hérnia Ventral/cirurgia , Masculino , Plasma Rico em Plaquetas/química , Plasma Rico em Plaquetas/imunologia , Ratos
9.
Curr Cardiol Rep ; 22(10): 115, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770360

RESUMO

PURPOSE OF REVIEW: The development of biventricular repair and conversion pathways for patients with borderline hypoplastic heart disease represents an area of recent inquiry and innovation. This review summarizes emerging techniques and novel treatment algorithms for borderline hypoplastic heart disease with a focus on surgical advances within the last 10 years. RECENT FINDINGS: Many patients with borderline hypoplastic heart disease are amenable to primary biventricular repair, or biventricular conversion following single-ventricle palliation coupled with ventricular rehabilitation strategies. New insights into the potential for growth and recovery of borderline ventricles have been uncovered. However, questions remain regarding optimal patient selection and the long-term outcomes of select patient groups treated with single-ventricle palliation versus biventricular repair/conversion or transplantation. Efforts to direct a greater proportion of borderline hypoplastic heart patients towards a biventricular circulation are accelerating and represent important avenues for progress and future research in the field of congenital heart disease.


Assuntos
Cardiopatias Congênitas , Síndrome do Coração Esquerdo Hipoplásico , Ventrículos do Coração/cirurgia , Humanos , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Cuidados Paliativos , Estudos Retrospectivos
11.
Adv Mater ; 30(4)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29215170

RESUMO

Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs.


Assuntos
Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária , Dentina , Humanos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...